Increased H(2)O(2) counteracts the vasodilator and natriuretic effects of superoxide dismutation by tempol in renal medulla.

نویسندگان

  • Ya-Fei Chen
  • Allen W Cowley
  • Ai-Ping Zou
چکیده

A membrane-permeable SOD mimetic, 4-hydroxytetramethyl-piperidine-1-oxyl (tempol), has been used as an antioxidant to prevent hypertension. We recently found that this SOD mimetic could not prevent development of hypertension induced by inhibition of renal medullary SOD with diethyldithiocarbamic acid. The present study tested a hypothesis that increased H2O2 counteracts the effects of tempol on renal medullary blood flow (MBF) and Na+ excretion (UNaV), thereby restraining the antihypertensive effect of this SOD mimetic. By in vivo microdialysis and Amplex red H2O2 microassay, it was found that interstitial H2O2 levels in the renal cortex and medulla in anesthetized rats averaged 55.91 +/- 3.66 and 102.18 +/- 5.16 nM, respectively. Renal medullary interstitial infusion of tempol (30 micromol x min-1x kg-1) significantly increased medullary H2O2 levels by 46%, and coinfusion of catalase (10 mg x min-1x kg-1) completely abolished this increase. Functionally, removal of H2O2 by catalase enhanced the tempol-induced increase in MBF, urine flow, and UNaV by 28, 41, and 30%, respectively. Direct delivery of H2O2 by renal medullary interstitial infusion (7.5-30 nmol x min-1x kg-1) significantly decreased renal MBF, urine flow, and UNaV, and catalase reversed the effects of H2O2. We conclude that tempol produces a renal medullary vasodilator effect and results in diuresis and natriuresis. However, this SOD mimetic increases the formation of H2O2, which constricts medullary vessels and, thereby, counteracts its vasodilator actions. This counteracting effect of H2O2 may limit the use of tempol as an antihypertensive agent under exaggerated oxidative stress in the kidney.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Production and actions of superoxide in the renal medulla.

The present study characterized the biochemical pathways responsible for superoxide (O(2)(-.)) production in different regions of the rat kidney and determined the role of O(2)(-.)in the control of renal medullary blood flow (MBF) and renal function. By use of dihydroethidium/DNA fluorescence spectrometry with microtiter plates, the production of O(2)(-. )was monitored when tissue homogenate fr...

متن کامل

Time-dependent effect of leptin on renal Na+,K+-ATPase activity.

Leptin, secreted by adipose tissue, is involved in the pathogenesis of arterial hypertension, however, the mechanisms through which leptin increases blood pressure are incompletely elucidated. We investigated the effect of leptin, administered for different time periods, on renal Na(+),K(+)-ATPase activity in the rat. Leptin was infused under anesthesia into the abdominal aorta proximally to th...

متن کامل

Intrinsic nitric oxide and superoxide production regulates descending vasa recta contraction.

Descending vasa recta (DVR) are 12- to 15-μm microvessels that supply the renal medulla with blood flow. We examined the ability of intrinsic nitric oxide (NO) and reactive oxygen species (ROS) generation to regulate their vasoactivity. Nitric oxide synthase (NOS) inhibition with N(ω)-nitro-l-arginine methyl ester (l-NAME; 100 μmol/l), or asymmetric N(G),N(G)-dimethyl-l-arginine (ADMA; 100 μmol...

متن کامل

Antioxidant enzymes and effects of tempol on the development of hypertension induced by nitric oxide inhibition.

BACKGROUND This study analyzed whether hypertension induced by N(omega)-nitro-l-arginine methyl ester (L-NAME) is associated with dysregulation of the main antioxidant enzymes (superoxide dismutase [SOD], catalase, glutathione peroxidase [GPX], and glutathione reductase [GR]) and whether chronic administration of tempol ameliorates this hypertension. METHODS Four groups of male Wistar rats we...

متن کامل

Increased renal medullary H2O2 leads to hypertension.

We have recently reported that exaggerated oxidative stress in the renal medulla due to superoxide dismutase inhibition resulted in a reduction of renal medullary blood flow and sustained hypertension. The present study tested the hypothesis that selective scavenging of O2*- in the renal medulla would prevent hypertension associated with this exaggerated oxidative stress. An indwelling, aortic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 285 4  شماره 

صفحات  -

تاریخ انتشار 2003